Sensing the World and
Making Decisions

Week #5
Prof. Ryan Kastner

Scribbler’s Internal Sensors

< Previous lecture you learned Scribbler’s internal
Sensors

1) Stall
Why: 1t could be stuck against a wall!!

2) Time
Why: Knowing the time 1s important to have more
complex robot behaviors!!

3) Battery Level

Why: So you can detect when to change the

batteries!!
<= UCSD

Scribbler’s External Sensors

< Scribbler also come equipped with a suite of
external sensors (exteroceptors) that can sense
various things in the environment

< These various things can be seen as inputs and
Scribbler perform different tasks depending on
them

= UCSD

Scribbler’s External Sensors

1) Camera

Why: It can take a still picture of whatever the robot
1S seeing

2) Light Sensors

Why: Scribbler detect variations in the ambience
light 1n a room

3) Proximity Sensors

Why: So Scribbler can detect objects on the front
and on 1ts sides

4

= UCSD

Getting to Know Sensors

< It 1s important to know

+ How to access the information reported by
them:

<+ What this information looks like.

Scribbler Sensors

<+ Try
74 Senses Q@
ﬁ?(fﬁ?lﬂ?(fﬂff(j) line: |1 [1
stall: 0
bright; 1876114 1706847 1395215
obstacle: |0 0 0

i |1 [1
light: |68 |28 |97
battery: [6.52962339351

= UCSD

Camera

< Camera 1s located on the Fluke dongle

Camera

< To take pictures, use
takePicture()
takePicture(“color”)

takePicture(“gray”)

< To show pictures, use
p = takePicture()

show (p)

= UCSD

Camera

< Alternatively you can use
show(takePicture())

< You can do many different things with these
pictures, but you might want to save them first:

savePicture(p, “NAME.jpg”)

<+ Exercise: Assume that Scribbler got lost, write a
program so Scribbler turns around, takes pictures
and shows them so you can locate it

= UCSD

Camera

while timeRemaining(30):
show(takePicture())

turnlLeft(0.5, 0.2)

< Do you know how many pictures it took?

N=20

while timeRemaining(30):
show(takePicture())
turnLeft(0.5, 0.2)
N=N +1

print N

= UCSD

Camera

< Can you create an animated GIF using these
1mages”?
Pics =[]
while timeRemaining(30):
pic = takePicture()
show(pic)
Pics.append(pic)
turnLeft(0.5, 0.2)
savePicture (Pics, “NAME.gif”)
< This code uses Lists which we will learn at the

end of this lecture.
<= UCSD

Light Sensors on Scribbler

Light Sensors

<+ To obtain values of light sensors, use
getLight()
getLight(<POSITION>)
getLight(‘left’) OR getLight(0)
< The values being reported can be 1n the range of

[0...5000]

< Low values imply bright light
= UCSD

10

Light Sensors on Scribbler

<+ Move your robot around, and see 1t values with

senses() command

< Also try:
L, C, R = getLight()
print L

= UCSD

11

Light Sensors on Fluke

< Camera on the fluke has a brightness sensor
getBright()
getBright(<POSITION>)

< The values being reported by these sensors can
vary depending on the view of the camera

< Higher values imply bright segments while lower
values imply darkness

12

= UCSD

Light Sensors on Fluke

< Important Note:

< getLight reports the amount of ambient light

being sensed by the robot (including the light
above the robot

< getBright 1s an average of the brightness
obtained from the image seen from the camera

These can be used in many different ways!

13

= UCSD

Proximity Sensor on Scribbler

< Scribbler has two infrared (IR) sensors on the
front of the robot

< To obtain values of the front IR sensors, use
getlR()
getIR(<POSITION>)

< IR sensors return eithera 1 or a 0.

< 1 1implies that there 1s nothing in close
proximity of the front of that sensor

14

= UCSD

Proximity Sensor on Fluke

<+ Fluke has three additional IR obstacle sensors

Obstacle Sensors .

Camera r'!.' :f ﬁ
< To obtain values of the obstacle IR sensors, use

getObstacle()
getObstacle(<POSITION>)

< The values reported by these sensors range from
0 to 7000.

+ A 0 implies there is nothing in front of the

Sensor
= UCSD

Lists in Python

< List 1s a sequence of objects

< These objects could be anything: numbers, letters,
strings, 1mages etc.

< Lists are very useful way of collecting a bunch of
information

+ Python provides many useful operations and
functions that enable manipulation of lists

16

= UCSD

Lists in Python

< Try these:
#Empty List
]

N=[7,14, 17, 20, 27]
Cities = [“New York”, “Moscow’]

= UCSD

17

Lists in Python

< Try these:

>>> N =[7, 14, 17, 20, 27]

>>> Cities = [“New York”, “Dar es Salaam”, “Moscow”]
>>> FamousNumbers = [3.1415, 2.718, 42]

>>> SwankyZips = [90210, 33139, 60611, 10036]

>>> MyCar = [“Toyota Prius”, 2006, “Purple”]

>>> len(N)

>>>]en(L)

>>> N + FamousNumbers
>>> SwankyZips[0]

>>> SwankyZips[1:3]
>>> 33139 in SwankyZips
True

>>> 19010 in SwankyZips
False

= UCSD

18

Lists in Python

< Try these:
>>> SwankyZips
[90210, 33139, 60611, 10036]

>>> SwankyZips.sort()
>>> SwankyZips
[10036, 33139, 60611, 90210]

>>> SwankyZips.reverse()
>>> SwankyZips
[90210, 60611, 33139, 10036]

>>> SwankyZips.append(19010)
>>> SwankyZips
[90210, 60611, 33139, 10036, 19010]

= UCSD

Inputs in Python

< Using the mput function, you can input some
values into your Python programs:

>>> N = input("Enter a number: ")
Enter a number: 42

>>> print N
42

= UCSD

20

Remembering Python Functions

< Basic syntax for defining new commands/
functions:

def <FUNCTION NAME>(<PARAMETERS>):
<SOMETHING>

<SOMETHING>

< Writing functions that return values:

def triple(x):
Returns x*3
return x * 3

= UCSD

21

